
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Provably Efficient Resource Allocation for
Edge Service Entities Using Hermes

Sheng Zhang , Member, IEEE, Yu Liang, Jidong Ge , Member, IEEE,

Mingjun Xiao , Member, IEEE, and Jie Wu , Fellow, IEEE

Abstract— Virtualization techniques help edge environments
separate the role of the traditional edge providers into two: edge
infrastructure providers (EIPs), who manage the physical edge
infrastructure, and edge service providers (ESPs), who aggregate
resources (especially, compute resources) from multiple EIPs to
place service entities and offer value-added services to end users
(EUs). In such an environment, end users submit their data
analysis jobs to ESPs; ESPs process the data analysis jobs using
their service entities. One fundamental and critical problem for
an ESP is to decide how much compute resources to rent from
each edge server under the constraint that the total amount of
rental resources is no more than a specified budget threshold,
so that the average makespan of the data analysis jobs submit-
ted to it is minimized. This Edge Resource Allocation (ERA)
problem is proven to be NP-complete by reducing the set cover
problem to a special case of it. To design an approximation
algorithm for ERA, we perform two transformations on ERA:
first, we transform ERA into mERA by replacing minimization
with maximization; second, we transform mERA into dmERA
by limiting the possible amounts of rental resources to a finite set
of values. We find that dmERA has several tractable properties
that allow us to design Hermes, a provably efficient algorithm
that approximates the optimal allocation. We demonstrate that
the gap between Hermes and the optimum in simulations and
Android-based testbed experiments are no larger than 4.78% and
12.43%, respectively. Hermes can also output a curve showing
the trade-off between the average makespan and the budget
threshold, so that an ESP can choose the right balance.

Index Terms— Capacity provisioning, edge computing,
resource allocation, service entity.

I. INTRODUCTION

MOBILE devices are becoming increasingly popular and
pervasive. They are no longer luxuries but musts:

a plethora of people use them for banking, gaming, etc.

Manuscript received December 22, 2018; revised September 30, 2019 and
December 30, 2019; accepted April 18, 2020; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor Y. Chen. This work was sup-
ported in part by the NSFC under Grant 61872175, in part by the Nat-
ural Science Foundation of Jiangsu Province under Grant BK20181252,
in part by the Fundamental Research Funds for the Central Universities
under Grant 14380060, and in part by the Collaborative Innovation Center
of Novel Software Technology and Industrialization. (Corresponding author:
Sheng Zhang.)

Sheng Zhang, Yu Liang, and Jidong Ge are with the State Key Laboratory
for Novel Software Technology, Nanjing University, Nanjing 210023, China
(e-mail: sheng@nju.edu.cn; dg1832003@smail.nju.edu.cn; gjd@nju.edu.cn).

Mingjun Xiao is with the School of Computer Science and Technology,
Suzhou Institute for Advanced Study, University of Science and Technology
of China, Hefei 230026, China (e-mail: xiaomj@ustc.edu.cn).

Jie Wu is with the Center for Networked Computing, Temple University,
Philadelphia, PA 19122 USA (e-mail: jiewu@temple.edu).

Digital Object Identifier 10.1109/TNET.2020.2989307

However, mobile devices are, and will continue to be,
resource-poor, since the most sought-after features of a mobile
device are light weight and tolerable heat dissipation, not
high processor speed and large memory size [1]. Therefore,
mobile devices still fall short of running computation-intensive
jobs, such as augmented reality [2], interactive gaming [3],
and natural language processing [4]. A viable solution to
overcome this challenge is to offload mobile workloads to
remote clouds [5]. However, delivering mobile workloads to
remote datacenters incurs long WAN (Wide Area Network)
latency, which is not acceptable in many mobile applications
such as augmented reality.

Recent studies have proposed deploying small scale edge
servers that are geographically near mobile devices and end
users [3], [5]–[7]. Previous studies mainly focused on auto-
matic application partition for offloading [8]–[13], distributed
support for machine learning jobs [14], [15], edge service
entity placement [16], [17], etc.

Edge server resources tend to be virtualized and can be
allocated at a fine granularity by the aid of lightweight
virtualization techniques [18]. This enables edge virtualization,
a paradigm that decouples the functionalities in an edge
environment by separating the role of the traditional edge
providers into two: edge infrastructure providers (EIPs), who
manage the physical edge infrastructure, and edge service
providers (ESPs), who aggregate resources (e.g., compute
resources) from multiple EIPs to place service entities and
offer value-added services to end users (EUs). In such an
environment, end users submit their data analysis jobs to ESPs;
ESPs process the data analysis jobs using their service entities.
Fig. 1 shows an example. There are 3 edge servers, h1, h2, and
h3, owned by 2 EIPs. An ESP may rent compute resources
from multiple edge servers, e.g., ESP1 rents resources from
both h1 and h2. Three EUs u1, u2, and u3 submit jobs J1,
J2, and J3, respectively, to ESP1 via wireless links. An edge
server can offer edge services to an end user if the user is in
close proximity of the edge server, e.g., u1 can only use the
resources from h1, while u2 can use the resources from both
h1 and h2. Each end user can process a part of its job locally
using a mobile device and offload the rest of its job to the
edge servers it can reach.

From the perspective of an ESP, its objective is to minimize
the average completion time of the submitted jobs; meanwhile,
the ESP wants to minimize the total cost of renting substrate
resources from EIPs. Therefore, a fundamental and critical

1063-6692 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 15,2020 at 02:17:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6581-6399
https://orcid.org/0000-0003-1773-0942
https://orcid.org/0000-0001-7852-0282
https://orcid.org/0000-0002-3472-1717

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 1. An example scenario that includes 3 edge servers, 2 EIPs, 3 ESPs,
and 3 EUs. Given the constraint that the total amount of rental resources is
no more than a specified budget threshold, an ESP (e.g., ESP1) should decide
how many compute resources (e.g., x1 and x2) to rent from each edge server
so that the average makespan of the data analysis jobs submitted to ESP1 is
minimized.

problem for an ESP is to decide how many compute resources
to rent from each edge server under the constraint that the total
amount of rental resources is no more than a specified budget
threshold, so that the average makespan of the data analysis
jobs submitted to it is minimized. We call this problem the
Edge Resource Allocation (ERA) problem.

The ERA problem is non-trivial due to the following
intertwined challenges. First, both of edge servers and user
jobs are heterogeneous, so when making the rental decisions,
an ESP should respect such heterogeneity. Second, due to
the proximity requirement, each edge server can only offer
resources to a limited number of users and a user can only
use resources from a limited number of edge servers. Third,
the goal (i.e., minimizing the average job makespan of a set of
jobs) is not linear, making traditional linear or integer linear
programming methods no longer effective. These intrinsically
intertwined challenges together complicate our problem.

This paper proposes Hermes,1 a provably efficient algorithm
that approximates the optimal allocation. The ERA problem is
proven to be NP-complete by reducing the set cover problem
to a special case of it. To design an approximation algorithm
for ERA, we perform two transformations on ERA: first,
we transform ERA into mERA by replacing minimization
with maximization; second, we transform mERA into dmERA
by limiting the possible amounts of rental resources to a
finite set of values. We find that dmERA has several tractable
properties that allow us to design Hermes. Fortunately, Hermes
is also an approximation algorithm for the original ERA prob-
lem. We theoretically prove that Hermes is an approximation
algorithm for dmERA, mERA, and ERA with approximation
factors 1−1/e

2G , 1−1/e
2(n+G) , and α + β − αβ, respectively, where

α and β are defined in Eq. (34). We also discuss three
extensions of Hermes. We use simulations and testbed-based
experiments to evaluate Hermes and verify our theoretical
analysis. We summarize our contributions here as follows:

1The name of the algorithm, Hermes, comes from the Olympian God
Hermes, who is famous for its unrivalled speed. Similar to the God Hermes,
the proposed algorithm minimizes the average job makespan, in other words,
it accelerates the job execution speed.

• We are the first to identify the edge resource allocation
problem and prove that ERA is NP-complete, to the best
of our knowledge.

• We design Hermes for ERA with guaranteed performance
through two-step transformation and two-step reversion.
We also discuss extensions and limitations of Hermes.

• We evaluate Hermes using simulations and testbed-based
experiments. The simulation results demonstrate that the
gap between Hermes and the optimum is 2.21% on
average and 4.78% at most. And the testbed results show
that the gap between Hermes and the optimum is 12.43%
at most.

The rest of the paper is organized as follows. We survey
related work in Section II. We introduce the edge resource
allocation problem and its complexity in Section III. We then
present our solution in Section IV. Evaluation is given in
Section V. We conclude the paper and discuss limitations in
Section VI.

II. RELATED WORK

There are many works considering efficient offloading for
edge computing from both the systemic [10]–[13] and algo-
rithmic [8], [9], [19]–[21] perspectives. The multi-user compu-
tation partition problem with the objective of minimizing the
average time is solved in [9]. Dynamic offloading with com-
pletion deadline constraint to reduce energy consumption is
studied in [8]. Time slot assignment for energy-efficient mobile
offloading is investigated in [19]. Tan et al. [20] proposed to
greedily dispatch jobs and schedule jobs using the Highest
Residual Density First rule, when there are multiple jobs and
multiple edge servers. Sundar and Liang [21] investigated the
problem of dispatching dependent tasks to multiple edges with
deadline constraints, so as to minimize application execution
cost. Chen et al. [22] leverages deep reinforcement learning
to efficiently dispatch bursty jobs.

Service entity placement was investigated in some recent
works. Jia et al. [23] studied the load balancing between
multiple edge servers. Yu et al. [16] investigated the problem
of joint edge server provisioning and routing path selection
from the perspective of networking. Xu et al. [24] consid-
ered the caching and offloading problem in resource-limited
edge servers to minimize computation latency. Zhang and
Tang [25] studied the client assignment problem for DIAs.
Liang et al. [26] proposed a utility-based entity placement
framework and they also investigated the interaction-oriented
edge service entity placement problem [27]. Wang et al. [17]
studied a similar service entity placement problem that resem-
bles the uncapacitated facility location problem [28]. Some
other works have discussed the edge support for mobile
augmented reality (MAR) applications. Liu et al. [29] focused
on edge server assignment and frame resolution selection to
minimize MAR service latency. VideoStorm [30] leverages the
resource-quality tradeoff and latency-tolerance of partial video
analysis requests to accelerate video analysis. Chameleon [31]
utilizes temporal persistence of top-k configurations and spa-
tial similarities to minimize the resource consumption for
video analysis. JCAB [32] jointly optimizes the configuration
of edge-based video analysis and the bandwidth allocation for

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 15,2020 at 02:17:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: PROVABLY EFFICIENT RESOURCE ALLOCATION FOR EDGE SERVICE ENTITIES USING HERMES 3

maximizing the total accuracy and minimizing the total energy
cost. These studies explore domain-specific knowledges to
optimize edge video analysis.

Some other studies [4], [33]–[36] propose pooling together
near-by (maybe intermittently-connected) mobile devices for
resource sharing, and they form a self-organized cloudlet that
collaboratively solves parallel tasks. Workloads are usually
assumed fine-grained and permit arbitrary partitioning [37].
How to split workloads during a contact to minimize job
makespan is investigated in [34]. How to estimate the compu-
tational capacity of a cloudlet is studied in [35].

The power of two choices is due to [28], [38]. Submodular
function optimization can be found in [39], [40].

In short, none of existing studies has investigated the
resource allocation problem in edge virtualization from the
perspective of an edge service provider. We propose solutions
with non-trivial performance guarantees. We also reveal the
trade-off between makespan and budget.

III. PROBLEM AND COMPLEXITY

In this section, we first introduce the scenario we consider
in this paper, then we present the notations and the problem
formulation, lastly we show its time complexity.

A. The System

In edge computing environments, edge servers are usually
deployed on a business premise such as in a doctor office
or a coffee shop [6]. According to the Open Edge Computing
initiative [18], edge server resources tend to be virtualized and
can be allocated at a fine granularity by the aid of lightweight
virtualization techniques. Hence, a mobile device can offload
part of its job to nearby edges, i.e., the job is done in parallel
by multiple nearby edges. In general, there are two parallelism
models: data parallelism and model parallelism [15]. In the
first model, the input data is partitioned among the edge
servers, and each edge server locally processes the data and
returns the results to the mobile device. The second one is
usually used in machine learning for training a model which is
partitioned among edge servers, and each edge server updates
part of the model parameters by processing the entire input
data. Data parallelism has been more widely adopted than
model parallelism; thus, in this paper, we adopt the data
parallelism model.

In the data parallelism model, the input data can be
classified into two types: modularly divisible and arbitrarily
divisible [37]. The workload on the first type of data is
usually represented as a directed acyclic graph (DAG) which
has dependencies between its small tasks. The workload on
the second type of data has the property that all elements in the
input demand an identical type of processing [34], [41], [42].
These loads have the characteristic that they can be arbitrarily
partitioned into any number of load fractions. Many jobs have
this property. e.g., processing of massive experimental data,
image processing applications like feature extraction and edge
detection, computations of Hough transforms, and extraction
of signals buried in noise from multidimensional data collected
over large spans of time. Therefore, in this paper, we assume

Fig. 2. Scenario overview.

job workloads are fine-grained and permit arbitrary partition.
We postpone the discussion on the case in which partition is
limited until Section IV-D.

Fig. 2 shows the overview of our scenario. Mobile users2

submit their jobs in an online manner. Time is divided into
multiple time windows of each length. The proposed algo-
rithm, i.e., Hermes, allocates resources to service entities at
the end of each time window for jobs submitted within the
window. More specifically, when a device ui submits a job Ji,
it would provide the amount of workload of Ji, which is
denoted by si, and the amount of available local computation
resources at ui. These job descriptions are stored in a queue
(see 1� in Fig. 2); at the end of each time window, we run
Hermes to find how many compute resources to rent from each
edge server so that the average makespan of the jobs in the
queue is minimized (see 2� in Fig. 2); the allocation results
are then sent back to each device and edge server (see 3�
in Fig. 2).

As mentioned above, we use si to denote the amount
of workload of Ji, which is quantified by the amount of
computations (e.g., the total number of CPU cycles required
to accomplish a job is used as the workload of the job in [8]).
Without loss of generality, the input size of Ji is assumed to be
proportional to the workload size of Ji; thus, we also use si to
represent the input size of Ji. By offloading partial workloads
to some edge servers, the amount of compute resources a job
can use consists of two parts: the capacity of the job submitter
and the equal-share of each edge server it connects with. Now
we have the following question: given the amount of compute
resources a job can use, how does the job partition its workload
to minimize its own makespan?

For example, in Fig. 1, suppose the workload of J2 is 100,
the amount of local compute resources on the submitter u2

is 10, J2 can use 10 and 20 units of compute resources in
h1 and h2, respectively. How can we partition the workload
of J2 to minimize the makespan of J2? If we send 30 and
40 units of workloads to h1 and h2, respectively, the makespan
of J2 is max{ 30

10 , 30
10 , 40

20} = 3. It is not hard to see that,
to minimize the makespan of J2, J2 should finish at the same
time on u2, h1, and h2, resulting in the optimal makespan
max{ 25

10 , 25
10 , 50

20} = 2.5. Therefore, we can calculate the
optimal makespan of a single job through dividing the amount
of workloads by the total amount of compute resources it can
use, e.g., for J2, its optimal makespan is 100

10+10+20 = 2.5.
In the rest of the paper, given the amount of compute resources

2We will use user and device interchangeably in this paper.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 15,2020 at 02:17:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

a job can use, we assume that its makespan is the amount of
workloads divided by the total amount of compute resources
it can use.

Each device can partition the input of its job based on the
allocation results returned by Hermes in the following way.
We assume the compute resources rented by an ESP in each
edge server is equally shared among the devices that are in
proximity to it. For example, in Fig. 1, if ESP1 rents x1 =
40 and x2 = 20 units of compute resources in h1 and h2,
respectively, then, J2 can use 40

2 = 20 and 20
2 = 10 units of

resources in h1 and h2, respectively. Suppose the amount of
local computation resources at u2 is 10 and the input size of
J2 is 160, then the optimal makespan of J2 is 160

20+10+10 = 4.
Therefore, u2 should send 4 × 20 = 80 and 4 × 10 = 40
units of input data to h1 and h2, respectively, and keep the
remaining 40 units of input data for local processing.

As mobile devices are usually in proximity to edges, net-
work latency is usually very small compared with computation
latency. Besides, the input data can be partitioned into blocks;
when a block is received by a service entity, the entity can
start processing it and meanwhile the subsequent blocks are
being transmitted. That is, transmitting data and processing
data can be done in a pipeline-like way, which further reduces
the impact of network latency on the job makespan. Therefore,
in this paper, we assume that transmitting a part of a job from
a user to an edge server incurs no network latency.

B. Problem Formulation

We consider an edge computing scenario which contains a
set of n edge servers, denoted by h1, h2, …, and hn. They
are operated by multiple different EIPs. There is one ESP of
interest. The budget threshold for the ESP is C. Denote by
xi the amount of compute resources the ESP wants to rent
in each edge server. These xi’s are the optimization variables.
Obviously, we have

∑n

i=1
xi ≤ C. (1)

This paper focuses on delay-sensitive mobile jobs, which
demand low delay for improving user experience [9]. Such
kind of jobs (e.g., mobile augmented reality) usually perform
computation-intensive operations onto the input data and then
output the results. There are m data analysis jobs, J1, J2, …,
and Jm, submitted by users u1, u2, …, and um, respectively.
ui is also called the submitter of Ji. We use ui to refer
to both the user and the mobile device, unless otherwise
specified.

The computation workload of a job can be represented
in terms of the total number of CPU cycles required for
accomplishing the job [8], [43]. In this paper, we let si denote
the amount of workloads of Ji. To reduce the completion time
of a job Ji, the submitter ui usually offloads partial workloads
to nearby edge servers and processes the remaining workloads
locally using its own computation resources. Let bi denote the
amount of available computation resources ui has for its job.

The connections of edge servers and users are represented
by a 0-1 matrix R = [rij]n×m, where

rij =

{
1 if uj is in proximity to hi,

0 otherwise.
(2)

The number of users that are connected to hi is hence∑m
k=1 rik . As we mentioned before, we assume that the

compute resources rented by an ESP in each edge server is
equally shared among the users that are in proximity to it.
In other words, if rij = 1, then Jj obtains xi�m

k=1 rik
amount

of compute resources (i.e., the clock frequency of the CPU
chip [8]) from edge server hi. Thus, the total amount of
compute resources Jj can use is

bj +
n∑

i=1

rijxi
m∑

k=1

rik

. (3)

As we mentioned in the last subsection, the makespan of a
job is the amount of workloads divided by the total amount
of compute resources it can use. Therefore, the makespan of
Jj can be represented by

sj

bj +
n∑

i=1

rijxi
m�

k=1
rik

. (4)

We use the average makespan, i.e.,

1
m

m∑
j=1

sj

bj +
n∑

i=1

rijxi
m�

k=1
rik

, (5)

as the optimization goal. The average job makespan indicates,
on average, how long it takes for a data analysis job to get its
final output. Given a set of jobs, the total number of jobs,
i.e., m, is fixed. Thus, minimizing average job makespan
is equivalent to minimizing the total makespan. Therefore,
the optimization goal can be rewritten as

d(X) = d([x1, x2, . . . , xn]) =
m∑

j=1

sj

bj +
n∑

i=1

rijxi
m�

k=1
rik

, (6)

where X = [x1, x2, . . . , xn]. Main notations are summarized
in Table I for quick reference.

The ERA problem can be formulated as follows:

[ERA] min d(X)

s.t.
n∑

i=1

xi ≤ C

xi ≥ 0, i = 1, 2, . . . , n (7)

Note that d(X) is non-linear, therefore, ERA is not a linear
programming problem. Taking Fig. 1 for example, suppose
there are 3 jobs with s1 = 70, s2 = 100, s3 = 50, b1 = 1,
b2 = 5, and b3 = 10. When the budget threshold C for ESP1

is 90, the optimal solution is x1 = 59 and x2 = 31; when C
increases to 180, the optimal allocation changes to x1 = 107
and x2 = 73.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 15,2020 at 02:17:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: PROVABLY EFFICIENT RESOURCE ALLOCATION FOR EDGE SERVICE ENTITIES USING HERMES 5

TABLE I

MAIN NOTATIONS FOR QUICK REFERENCE

C. Complexity

By reducing the NP-complete Set Cover (SC) problem [28]
to ERA, we have the following theorem.

Theorem 1: The decision version of ERA is NP-complete.
Proof: We first present the decision versions of SC and

ERA as follows.
• Decision version of SC: Given a universe U =
{e1, e2, . . . , eM} of M elements, an integer K , a col-
lection of subsets of U , i.e., R1, R2, …, and RN , does
there exist a sub-collection of these subsets with size no
more than K that covers all elements of U?

• Decision version of ERA: Given n edge servers, the con-
nection matrix R, the budget threshold C, and m jobs
J1, J2, …, and Jm, where Ji has bj units of local
computation resources and sj units of workloads, is there
an assignment of xi that makes the total makespan no
more than D?

We now show that any instance of SC can be poly-
nomially reduced to an instance of ERA. Without loss
of generality, denote an arbitrary instance of SC by <
M, N, K,Ri >, the corresponding instance of the ERA
problem < m, n, sj , bj, rij , C, D, xi > can be constructed as
follows:

• m←M and n← N ;
• sj ←M and bj ← 1 for each job;
• rij ← 1 if hj ∈ Ri; otherwise, rij ← 0;
• C ←MK max

i
{|Ri|}+ 1;

• D ←M ;
• xi can be either �M max

i
{|Ri|}+ 1

K � or 0.

It is easy to see that the construction can be finished in
polynomial time. Now, it is sufficient to show that these two
instances are indeed equivalent.

(⇐=) Suppose that ERA has a positive answer, i.e., there is
an assignment of xi such that the total makespan is no more
than D. Considering the possible values of each xi, the ESP
can rent �M max

i
{|Ri|} + 1

K � amount of compute resources

from at most K edge servers. Without loss of generality,
we assume,

xi =

{
�M max

i
{|Ri|}+ 1

K � 1 ≤ i ≤ K,

0 otherwise.
(8)

We now show {R1,R2, . . . ,RK} is indeed a positive answer
to SC, which is equivalent to proving each user connects
with at least one of h1, h2, …, and hK . We prove this by
contradiction: suppose some user, say uj , does not connect
with any of h1, h2, …, or hK , then the makespan of Jj is
sj/bj = M = D. Therefore, the total makespan over all jobs
would be larger than D, which contradicts that it is a positive
answer to ERA.

(=⇒) Suppose that SC has a positive answer. Without loss
of generality, we assume R1, R2, …, and RK are selected
in SC and can cover all elements. For ERA, we let xi =
�M max

i
{|Ri|} + 1

K � for 1 ≤ i ≤ K , otherwise xi = 0.

Firstly, since

n∑
i=1

xi ≤ �M max
i
{|Ri|}+

1
K
� ·K ≤ C, (9)

this is a feasible assignment. Note that xi is not necessarily
an integer. Secondly, for any job Jj , since it connects with at
least one edge server, its makespan (see Eq. (4)) is no more
than

sj

bj +
n∑

i=1

rijxi
m�

k=1
rik

≤ M

1 +
�M max

i
{|Ri|}+ 1 K�

max
i

{|Ri|}

<
M

1 + M
< 1. (10)

So the total makesoan of all jobs is no more than 1×M = D,
which implies ERA also has a positive answer.

So far we have proved that the decision version of ERA is
NP-hard. Given an assignment of xi’s, we can verify whether
the total makespan exceeds D in O(mn) time, therefore, ERA
belongs to NP. Combining them together, we prove that the
decision version of ERA is NP-complete. �

It is nontrivial to directly find an efficient algorithm for
ERA. Therefore, in the next section, we first look at some
special cases of ERA to reveal the problem structure and find
key insights that help us design Hermes for ERA.

IV. THE SOLUTION: HERMES

Observing that directly solving ERA is not easy, we first
perform two transformations on ERA to obtain a new problem
dmERA in Section IV-A. Then, we find that dmERA has
several tractable properties that allow us to design Hermes
in Section IV-B. We provide theoretical analysis on Hermes
in Section IV-C. Extensions of Hermes are discussed in
Section IV-D.

A. Problem Transformation

Given any instance of ERA,
∑m

j=1
sj

bj
is fixed. Thus, mini-

mizing d(X) in Eq. (6) is equivalent to maximizing

D(X) = −
m∑

j=1

sj

bj +
n∑

i=1

rijxi
m�

k=1
rik

+
∑m

j=1

sj

bj
. (11)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 15,2020 at 02:17:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 3. Theorems 3 to 5 provide theoretical performance bounds of Hermes
w.r.t. dmERA, mERA, and ERA, respectively.

Then we have the following equivalent problem, where “m"
in mERA denotes maximization:

[mERA] max D(X)

s.t.
n∑

i=1

xi ≤ C

xi ≥ 0, i = 1, 2, . . . , n (12)

We further transform mERA to dmERA by limiting xi to
a finite set of possible values, where “d" in dmERA denotes
discretization:

[dmERA] max D(X)

s.t.
n∑

i=1

xi ≤ C

xi ∈ {0,
C

G
, . . . ,

GC

G
}, i = 1, 2, . . . , n

(13)

In dmERA, G is a hyper-parameter: in practice, it could
be the number of CPU cores. We can think of G as a knob
that we are able to turn and it controls the approximation
ratio and running time of Hermes. We will see the impact
of G from the perspectives of both theoretical analysis and
extensive simulations.

Relationship among ERA, mERA, and dmERA is shown
in Fig. 3. The roadmap is outlined as follows. In Section IV-B,
we develop an approximation algorithm, i.e., Hermes, for
dmERA. In Section IV-C, we prove that Hermes is also an
approximation algorithm for both mERA and ERA.

B. Solving Discrete Maximization Version of ERA

We start by looking at two special cases of dmERA. Note
that, our target is not to solve these two special cases, but to
collect useful information for us to solve the general dmERA
problem.

1) Uniform Fixed Rental: In this case, we assume

xi is either 0 or FC
G for any edge server hi,

where F is an fixed integer and 1 ≤ F ≤ G.

Then, the decision we have to make is to select a subset H
of {h1, h2, . . . , hn} and make sure that the number of selected
edge servers is no more than � C

F C
G

� = �G
F �.

The objective function in this case can be rewritten as
follows, where “u" denotes uniform:

Du(H) = −
m∑

j=1

sj

bj +
∑

hi∈H
rij

F C
G

m�

k=1
rik

+
m∑

j=1

sj

bj
. (14)

The uniform case of dmERA can be formulated as follows:

[udmERA] max Du(H)

s.t. |H| ≤ �G
F
� (15)

In the following, we prove that Du(H) has three tractable
properties: nonnegativity, monotonicity, and submodularity.

Definition 1: (Nonnegativity, Monotonicity, and Sub-
modularity) Given a non-empty finite set U , and a function f
defined on the power set 2U of U with real values, f is called

• nonnegative if f(A) ≥ 0 for all A ⊆ U ;
• monotone if f(A) ≤ f(A�) for all A ⊆ A� ⊆ U ;
• submodular if f(A∪{a})−f(A) ≥ f(A�∪{a})−f(A�)

for all A ⊆ A� ⊆ U and a ∈ U −A�.
We have the following theorem:
Theorem 2: Du(H) in udmERA is nonnegative, monotone,

and submodular.
Proof: (Nonnegativity) Since

∑
hi∈H

rij
F C
G�

m
k=1 rik

≥ 0 for any

Jj , we have
sj

bj +
∑

hi∈H
rij

F C
G

m�

k=1
rik

≤ sj

bj
, (16)

which guarantees that Du(H) is nonnegative.
(Monotonicity) For all H ⊆ H�, since, for any Jj ,

∑
hi∈H

rij
FC
G

m∑
k=1

rik

≤
∑

hi∈H�

rij
FC
G

m∑
k=1

rik

, (17)

we have Du(H) ≤ Du(H�), which indicates monotonicity.

(Submodularity) Denote (bj +
∑

hi∈H
rij

F C
G�m

k=1 rik
) by f(H, j).

For all H ⊆ H� and any edge server h, we have

f(H, j) · f(H�, j) ≤ f(H ∪ {h}, j) · f(H� ∪ {h}, j)
⇔ f(H�, j)− f(H)

f(H, j) · f(H�, j)
≥ f(H�, j)− f(H)

f(H∪ {h}, j) · f(H� ∪ {h}, j)
⇔ sj

f(H)
− sj

f(H∪ {h}, j) ≥
sj

f(H�, j)
− sj

f(H� ∪ {h}, j)
⇔ Du(H ∪ {h})−Du(H) ≥ Du(H� ∪ {h})−Du(H�),

which indicates that Du(H) is submodular. �
Theorem 2 enables us to design an approximation algorithm

of factor (1−1/e) shown in Algorithm 1, where e is the base of
natural logarithm [40]. Remember that xi can only be 0 or FC

G
in udmERA, we only have to select a subset of edge servers.
In Algorithm 1, H is initialized to ∅; in each iteration, we add
the edge server that maximizes the marginal gain of Du(H)
into H, i.e., in each iteration, we select hi /∈ H that maximizes
Du(H ∪ {hi})−Du(H).

There are at most n iterations in Algorithm 1; in each
iteration, we need to check at most n clouds to find the cloud

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 15,2020 at 02:17:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: PROVABLY EFFICIENT RESOURCE ALLOCATION FOR EDGE SERVICE ENTITIES USING HERMES 7

Algorithm 1 Algorithm for udmERA
Input: the job size sj and the local computation capacity bj

for each j ∈ [1, m], the connection indicator rij for each
pair of i ∈ [1, n] and j ∈ [1, m], budget threshold C,
hyper-parameter G, fixed integer F

Output: H
1: H ← ∅
2: while |H| < �G

F � do
3: select hi /∈ H that maximizes Du(H∪{hi})−Du(H)
4: H ← H ∪ {hi}
5: end while
6: return H

Algorithm 2 Algorithm for ndmERA
Input: the job size sj and the local computation capacity bj

for each j ∈ [1, m], the connection indicator rij for each
pair of i ∈ [1, n] and j ∈ [1, m], budget threshold C,
hyper-parameter G, fixed integer fi for each i ∈ [1, n]

Output: H
1: call Algorithm 1 to generate H1

2: H2 ← ∅
3: while G ≥ ∑

hi∈H2

fi + min
hi /∈H2

fi do

4: select hi /∈ H2 that maximizes Dn(H2∪{hi})−Dn(H2)
fi

subject to
∑

hj∈H2∪{hi}
fi ≤ G

5: H2 ← H2 ∪ {hi}
6: end while
7: return arg max

H�∈{H1,H2}
Dn(H)

that maximizes the marginal gain. It takes O(mn) time to
compute Du(H), thus, the time complexity of Algorithm 1
is O(mn3).

2) Non-Uniform Fixed Rental: In this case, we assume

xi is fiC
G for edge server hi,

where fi is an fixed integer and 0 ≤ fi ≤ G.

Then, the decision we have to make is also to select a subset
H of {h1, h2, . . . , hn} and make sure that the total amount of
rental resources in selected edge servers is no more than C,
i.e.,

∑
hi∈H xi =

∑
hi∈H

fiC
G ≤ C, which is equivalent to∑

hi∈H fi ≤ G.
The objective function in this case can be rewritten as

follows, where “n" denotes non-uniform:

Dn(H) = −
m∑

j=1

sj

bj +
∑

hi∈H
rij

fiC

G
m�

k=1
rik

+
m∑

j=1

sj

bj
. (18)

The non-uniform dmERA can be formulated as follows:

[ndmERA] max Dn(H)

s.t.
∑

hi∈H
fi ≤ G (19)

To solve ndmERA, an intuitive idea is to use the same
greedy heuristic in Algorithm 1. Another intuitive idea is that,

in each iteration, we select the edge server that maximizes
the ratio of marginal gain of Dn(H) to the amount of rental
resources in that edge server, i.e., in each iteration, we select
hi /∈ H that maximizes Dn(H∪{hi})−Dn(H)

fi
. However, there

is no theoretic performance guarantee on either of them.
Fortunately, if we use these two ideas independently and return
the better one of the two results, then the performance is
bounded [38], [40], [44]: the approximation ratio is 1

2 (1− 1e).
The algorithm is shown in Algorithm 2. It is not hard to see
the time complexity of the algorithm is also O(mn3).

3) General dmERA: We design Hermes (shown in Algo-
rithm 3) for dmERA. The main intuition behind Hermes is
as follows: since we already have an approximation algorithm
(Algorithm 2) for ndmERA, is it possible for us to find another
intermediate problem that is (a) similar to ndmERA, and
(b) easy to transform the results to fit for dmERA?

Fortunately, such an intermediate problem exists, and we
name it idmERA, where “i" denotes intermediate: there are m
jobs with parameters bj and sj , n groups of edge servers, each
group has G edge servers, the coverages of edge servers in the
same group are the same. More specifically, the i-th group of
edge servers are denoted by hi1, hi2, …, and hiG. We use xik

to denote the amount of resources we would like to rent in
edge server hik. Similar to ndmERA, we assume xik = kC

G .
The coverage can be represented by a three-dimensional matrix
[rikj]n×G×m, where rikj = 1 if hi connects with uj , otherwise
rikj = 0.

The budget threshold is still C, the question is how to
choose a subset H of these nG edge servers to maximize

Q(H) = −
m∑

j=1

sj

bj +
∑
i,k

rikjxik
m�

h=1
rikh

+
m∑

j=1

sj

bj
. (20)

Notice that, idmERA is in fact a large instance of ndmERA,
where the number of edge servers becomes nG. Keeping this
observation in mind, let us look at Hermes in Algorithm 3.
Lines 2-10 generate a solution, [y�

ig]n×G, for idmERA using
the same idea as in Algorithm 1. Here, y�

ig indicates whether
the edge server hig is selected. Lines 11-13 transform [y�

ig]n×G

into X� that fits for dmERA: for the i-th group of edge servers,
we set x�

i to be the maximal amount of rental resources among
all selected edge servers in this group and remove the rest
(if any). After doing this, we get some unused budget due
to removal, which is (C −∑n

i=1 x�
i). We then allocate them

in a greedy manner: in each iteration, add C
G to the x�

i that
maximizes the marginal objection function, finally we get X�.
Lines 15-26 construct another solution X�� using the other
idea as in Algorithm 2. The final result is the better one of X�

and X��.
The time complexity of Hermes is O(mn3G3). The theo-

rems in the next subsection indicate that Hermes has perfor-
mance guarantee. We will shortly see in extensive evaluations
and testbed-based experiments that, Hermes is far better than
this theoretical bound.

C. Theoretic Analysis

Theorem 3: Hermes is a factor 1−1/e
2G approximation algo-

rithm for dmERA.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 15,2020 at 02:17:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 3 Hermes
Input: the job size sj and the local computation capacity bj

for each j ∈ [1, m], the connection indicator rij for each
pair of i ∈ [1, n] and j ∈ [1, m], budget threshold C,
hyper-parameter G

Output: X = [x1, x2, . . . , xn]
1: // construct X�

2: set xi ← 0 for each i ∈ [1, n]
3: set y�

ig ← 0 for each i ∈ [1, n] and g ∈ [1, G]
4: set Y ← 0
5: while Y ≤ G do
6: select the y�

ig that (1) y�
ig = 0 and (2)

maximizes D([x1, . . . , xi + y�
ig · C

G , . . . , xn]) −
D([x1, . . . , xi, . . . , xn])

7: set y�
ig ← 1

8: set xi ← xi + y�
ig · C

G
9: set Y ← Y + g

10: end while
11: set y�

i0 ← 1 for each i ∈ [1, n]
12: set x�

i ← C
G · max

y�
ig=1,g∈[0,G]

g for each i ∈ [1, n]

13: allocate the remaining budget (i.e., C − ∑n
i=1 x�

i)
in a greedy manner: in each iteration, add C

G to
the x�

i that maximizes D([x�
1, . . . , x

�
i + C

G , . . . , x�
n]) −

D([x�
1, . . . , x

�
i, . . . , x

�
n])

14: // construct X��

15: set xi ← 0 for each i ∈ [1, n]
16: set y��

ig ← 0 for each i ∈ [1, n] and g ∈ [1, G]
17: set Y ← 0
18: while Y ≤ G do
19: select the y��

ig that (1) y��
ig = 0 and (2) maximizes

D([x1,...,xi+y��
ig·C

G ,...,xn])−D([x1,...,xi,...,xn])

g

20: set y��
ig ← 1

21: set xi ← xi + y��
ig · C

G
22: set Y ← Y + g
23: end while
24: set y��

i0 ← 1 for each i ∈ [1, n]
25: set x��

i ← C
G · max

y��
ig=1,g∈[0,G]

g for each i ∈ [1, n]

26: allocate the remaining budget (i.e., C − ∑n
i=1 x��

i)
in a greedy manner: in each iteration, add C

G to
the x��

i that maximizes D([x��
1 , . . . , x��

i + C
G , . . . , x��

n]) −
D([x��

1 , . . . , x��
i , . . . , x��

n])
27: // return the better one of X� and X��

28: return arg max
X∈{X�,X��}

D(X)

Proof: Denote by X∗ the optimal solution to dmERA,
and by X the solution returned by Hermes. We want to prove

D(X)
D(X∗)

≥ 1− 1/e

2G
. (21)

Let H∗ be the optimal solution to idmERA, and let H� be
arg max

H∈{H1,H2}
Q(H). According to previous results [38], [40],

we know

Q(H�) ≥ 1− 1/e

2
Q(H∗). (22)

Notice that, if we can only select one cloud from each cloud
group, idmERA is equivalent to dmERA, i.e., dmERA is a
special case of idmERA. With this observation, we have

Q(H∗) ≥ D(X∗). (23)

Looking at lines 11-13 and 24-26 of Hermes, when trans-
forming [y�

ig]n×G into X�, we set x�
i to be the maximal amount

of rental resources among all selected edge servers in this
group and remove the rest. Considering there are at most G
edge servers in each group, we have

D(X�) ≥ Q(H1)
G

,

D(X��) ≥ Q(H2)
G

. (24)

Combining Eqs. (22), (23), and (24) together, we have

D(X) = max{D(X�), D(X��)}
≥ max{Q(H1), Q(H2)}

G
=

Q(H�)
G

≥ 1− 1/e

2G
Q(H∗)

≥ 1− 1/e

2G
D(X∗). (25)

The theorem holds immediately. �
In the last theorem, we have shown that Hermes is a factor

1−1/e
2G approximation algorithm for dmERA. Remember that

dmERA differs from mERA in the possible values of xi’s:
the former limits any xi to one of 0, C

G , …, (G−1)C
G , and C,

while the latter allows any xi to be any real number between
0 and C. We show below that, although Hermes is designed
for dmERA, it has guaranteed performance for mERA.

Theorem 4: Hermes is a factor 1−1/e
2(n+G) approximation algo-

rithm for mERA.
Proof: Remember that, mERA allows xi’s to be assigned

any real values between 0 and C.
Denote by X† the optimal assignment of xi’s in mERA,

by X∗ the optimal assignment in dmERA, and by X the
solution returned by Hermes. We want to know the relation
between X† and X. Since we already know the relation
between X∗ and X due to Theorem 3, what we are going
to do is to establish the relation between X† and X∗.

We construct another assignment X‡ by rounding each x†
i

in X† to the nearest multiples of C
G towards infinity, i.e.,

x‡
i =

fiC

G
, (26)

where fi satisfies

(fi − 1) C

G
< x†

i ≤
fiC

G
. (27)

Denote the total amount of rental resources in X‡ by C‡,
which is

C‡ = C +
n∑

i=1

(x‡
i − x†

i) ≤ C +
nC

G
. (28)

Obviously, we have

D(X†) ≤ D(X‡)|C‡ ≤ D(X‡)|C+ nC
G

, (29)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 15,2020 at 02:17:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: PROVABLY EFFICIENT RESOURCE ALLOCATION FOR EDGE SERVICE ENTITIES USING HERMES 9

where D(X‡)|C‡ represents the objective function when the
budget threshold becomes C‡.

Let us take a close look at X‡. If we take C
G as a

unit of resource, X‡ contains (n + G) units of resources.
Consider removing the rental resources in X‡ unit by unit
in a greedy manner: each time we remove the unit that incurs
the least marginal loss. After removing n units, we get a new
assignment X§ that contains exactly G units of resources.

As the removal is conducted in a greedy manner with respect
to marginal loss, it is easy to see that, D(X§) is no less than

G
G+n percent of D(X‡)|C+ nC

G
, that is,

D(X§) ≥ G

G + n
D(X‡)|C+ nC

G
. (30)

Observing that X§ is a feasible assignment to dmERA with
respective to budget C, we have

D(X§) ≤ D(X∗). (31)

Combining Eqs. (29), (30), and (31) together, we have

D(X∗) ≥ G

n + G
D(X‡)|C+ nC

G
≥ G

n + G
D(X†). (32)

Taking Eq. (32) and Theorem 3 together, we further have

D(X) ≥ 1− 1/e

2G
D(X∗) ≥ 1− 1/e

2(n + G)
D(X†). (33)

The theorem holds immediately. �
We have shown that Hermes is an approximation algorithm

for mERA. Remember that mERA differs from ERA only
in the objective function: the former maximizes D(X) in
Eq. (11), while the latter minimizes d(X) in Eq. (6). We show
below that, Hermes approximates the optimal solution
to ERA.

Theorem 5: Hermes is a factor (α+β−αβ) approximation
algorithm for ERA, where

α =
1− 1/e

2(n + G)
, and β =

C + max
j
{bj}

min
j
{bj} . (34)

Proof: According to Eqs. (6), (11), and (33), we have

−d(X) +
m∑

j=1

sj

bj
≥ α(−d(X†) +

m∑
j=1

sj

bj
), (35)

which is equivalent to

d(X) ≤ αd(X†) + (1− α)
m∑

j=1

sj

bj
. (36)

In the next, we are trying to express
∑m

j=1
sj

bj
using d(X†).

We first develop a lower bound on d(X†). Obviously, d(X†)
is minimized when every application can occupy all the edge
server capacities, therefore,

d(X†) ≥
m∑

j=1

sj

bj + C
≥

m∑
j=1

sj

C + max
j
{bj} . (37)

Combining Eqs. (36) and (37) together, we have

d(X) ≤ αd(X†) + (1− α)
m∑

j=1

sj

bj

≤ αd(X†) + (1− α)

m∑
j=1

sj

min
j
{bj}

≤ αd(X†) + (1− α)
(C + max

j
{bj})d(X†)

min
j
{bj}

≤ (α + β − αβ)d(X†). (38)

The theorem holds immediately. �
It should be noted that, the approximation ratio of Hermes

in theory may be loose; however, we will shortly see in
performance evaluations that, the performance of Hermes is
far better than the theoretical bound.

D. Discussions

In this section, we discuss several extensions of Hermes to
handle various situations including weighted shared, limited
partition, and heterogeneous propagation delays.

Weighted Shares. Hermes assumes an edge server is
equally-shared among the devices it connects with. In reality,
although mobile users may have varied priorities and demands,
extending Hermes to fit for this scenario is not hard. We can
assign a weight wj to each user uj , where wj may be
proportional to the price that uj pays to the ESP. In this case,
d(X) becomes

d(X) =
m∑

j=1

sj

bj +
n∑

i=1

rijwjxi
m�

k=1
rikwk

. (39)

It is not hard to verify that the new d(X) still has the properties
discussed in this paper; thus, we only have to slightly adjust
Hermes to fit for weighted shares.

Limited Partition. So far, the Hermes algorithm works only
for the arbitrarily divisible workloads, as we mentioned in
Section III-A. This subsection discusses the case in which the
partition is limited. We assume the input of any job consists of
multiple indivisible blocks. Without loss of generality, the size
of a block is denoted as δ. Then, the size sj of the input of
Jj can be denoted by pjδ, where pj is the number of blocks.
We extend Hermes as follows to solve this case.

We first run Hermes to obtain the resource allocation
X = [x1, x2, . . . , xn]. Then, we know the total amount of
computation resources Jj can use is bj +

∑n
i=1

rijxi�
m
k=1 rik

.
Denote this value as ηj . Then, mobile device uj should send
yi = sj

ηj
· rijxi�m

k=1 rik
units of input data to the service entity

located at edge server hi. However, these yi’s may not be
exactly a multiple of δ. We then round down these yi’s
and let the remaining input data, which is sj −

∑n
i=1�yi�,

be sent to sj−
�n

i=1�yi�
δ randomly selected edge servers that

are connected to uj .
By doing so, at most one more block is sent to an edge

server, compared to the divisible case. Suppose the service

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 15,2020 at 02:17:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 4. Simulation results on small instances (the default setting is n = 6 and m = 50).

entity at hi receives one more block, then the completion time
of workloads from Jj at hi is at most δrij

xi�m
k=1 rik

larger than that

in the divisible case. Therefore, the makespan of Jj is at most
δrij

mini{ xi�m
k=1 rik

} longer than that in the divisible case.

Heterogeneous Propagation Delays. We mentioned in
Section III-A that the network latency is ignored in the pro-
posed algorithm Hermes, since transmitting data and process-
ing data can be simultaneously done in a pipeline-like way.
This subsection discusses the case in which the heterogeneous
propagation delays between users and edge servers are taken
into account.

Suppose the propagation delays between uj and hi is Lij .
Without loss of generality, we assume r1j = 1 and L1j =
max1≤i≤n(rijLij). Remember that a job is finished if all
parts of the job are finished. To minimize the makespan of Jj ,
we should let all parts of Jj finish at the same time. Therefore,
the makespan of Jj can be denoted by

sj − bjL1j −
n∑

i=1

(L1j − Lij)
rijxi
m�

k=1
rik

bj +
n∑

i=1

rijxi
m�

k=1
rik

+ L1j . (40)

Take J2 in Fig. 1 for example. Let s2 = 100, b2 = 10,
L12 = 0.5, L22 = 1, and J2 can use 10 and 20 units of com-
pute resources in h1 and h2, respectively. Then, the optimal
makespan of J2 is 100−10×1−(1−0.5)×10

10+10+20 +1 = 3.125. That is,
u2 sends (3.125−L12)× 10 = 26.25 and (3.125− 1)× 20 =
42.5 units of workloads to h1 and h2, respectively; and keeps
the remaining 31.25 units of workloads for local processing.

Given the makespan of each job, it is easy to verify the new
objective still has the properties discussed in this paper, which
helps us slightly modify Hermes to adapt to this situation.

V. PERFORMANCE EVALUATION

We evaluate Hermes using simulations, trace-driven and
testbed-based experiments. We answer the following questions
in our evaluation: (1) How effective is Hermes’s resource allo-
cation? (2) How well does Hermes approximate the optimal
allocation? (3) What is the effect of the hyper-parameter G?
(4) Can Hermes provide any suggestions on choosing the
budget threshold?

A. Simulation-Based Evaluation

Our simulations are setup as follows.

Similar to [8], for mobile device capacities, we uniformly
generated each bj between 100 to 1000 Mega cycles per sec-
ond; the amount of workloads of a job was uniformly gener-
ated between 500 to 1500 Mega cycles. For edge server hi,
we let rij = 1 with a probability that is randomly selected
between [1/15, 1/5]. By default, the number of jobs was 50;
the number of edge servers was 6; the budget threshold was
10,000 Mega cycles per second; and the hyper-parameter G
was 20.

We introduce four algorithms for comparison. OPT: we
simply use brute force to enumerate all possible allocations.
Equal: xi = C

n for each i ∈ [1, n]. Random: the budget
is randomly partitioned into n parts, which are assigned
to n clouds, respectively. FixedLevel: we first compute the
optimal xi for each hi irrespective of the other clouds, and
then use Algorithm 2 to find a selection.

Due to the high time complexity of OPT, we compared
Hermes with OPT on a “small” setting: the number of edge
servers, n, was 6, and the number of jobs, m, was 50.
When transforming mERA into dmERA, we introduce the
hyper-parameter G. We want to know how G affects the
performance of Hermes with respect to mERA and ERA.
Figs. 4(a) and 4(b) show the results under varying G.
We made two main observations. First, Hermes outperformed
FixedLevel, Random, and Equal; the gap between Hermes and
OPT was within 1% throughout these simulations. Second,
when G increased, Hermes had more opportunities to improve
the final allocation (i.e., D(X) in mERA increased and d(X)
in ERA decreased when G increased).

We are also interested in evaluating the effect of the
budget threshold. Figs. 4(c) and 4(d) depict the results.
As we expected, the performance of all algorithms gets
better when C increases, and the gap between Hermes and
OPT is extremely small. Their close performance may help
an ESP to make decisions when it wants to offer edge
service but does not know how to choose a proper budget
threshold.

We also ran Hermes and other algorithms except OPT on a
“large” setting: the number of edge servers, n, was 20, and the
number of jobs, m, was 300. Figs. 5 and 6 show the results.
There is an interesting observation in Figs. 5(a) and 5(b).
When the hyper-parameter G was less than 32, we found that,
Equal outperformed Hermes. This is due to the fact that, when
G was too small (e.g., G is less than n = 20 in these two
figures), Hermes did not have much opportunity to improve
the resource allocation, while Equal just split the total budget
equally among n clouds and thus it was not affected by G.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 15,2020 at 02:17:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: PROVABLY EFFICIENT RESOURCE ALLOCATION FOR EDGE SERVICE ENTITIES USING HERMES 11

Fig. 5. Simulation results on large instances (the default setting is n = 20 and m = 300).

Fig. 6. ERA under varying m and n (C = 600, 000, G = 50).

TABLE II

THE HERMES
OPT RATIO FOR ERA

This observation suggests that we should choose for G a value
at least larger than n.

Figs. 5(c) and 5(d) show the effect of the budget threshold C
in the large setting. We note that, throughout these simulations,
Hermes always outperformed the other three baselines, and
Hermes reduced the total makespan by 7% on average and
10% at most compared with the second-best one.

Fig. 6 demonstrates the impact of the number of jobs, m,
and the number of edge servers, n. When the number of
jobs increases, the total makespan increases; however, more
jobs benefit from nearby edge servers and the individual
makespan is shortened. When the number of edge servers
increases, Hermes has more opportunities to minimize the total
makespan.

To generalize our evaluation on approximation ratio,
Table II shows the approximation ratio of Hermes when both
of the number of edge servers and the number of jobs are
varying. We found that the gap between Hermes and OPT
was 2.21% on average, and 4.78% at most, which is far better
than our theoretical bounds.

B. Trace-Driven Evaluation

We consider a metropolitan area that contains edge servers
and users in this paper. For locations of edge servers, we use
the locations of Starbucks within the 4th ring road of Beijing,
as shown in Fig. 7(a). Similar to a previous study [17], we use
Starbucks’ locations as the locations of edge servers, because

the distribution of them in a city usually achieves a decent
coverage of users, making them very suitable for placing
edges. We calculate the minimum bounding rectangle of these
92 Starbucks with two sides parallel to a meridian. Then,
we extend this rectangle by adding 5km to each side, so as to
form the area of interest, within which we randomly generate
user locations.

We assume there is a connection between a user and a server
if the Euclidean distance between them is not larger than a
pre-defined threshold, e.g., 5km; then, the propagation delays
between them are synthesized following realistic distributions
disclosed in [45], making sure the average delay is 20ms.
The CDF of the synthetically generated delays is shown
in Fig. 7(b), in which y × 100% connections are associated
with x × % smallest delays. For example, 80% connections
are associated with nearly 14% smallest delays in Fig. 7(b).

Similar to the simulations in the last subsection, we uni-
formly generated each bj between 100 to 1000 Mega cycles
per second; the amount of workloads of a job was uniformly
generated between 500 to 1500 Mega cycles. By default,
the number of jobs was 500; the budget threshold was
100,000 Mega cycles per second; and the hyper-parameter G
was 20.

Figs. 7(c) and 7(d) shows the impact of the number of
jobs and the budget threshold, in which the default setting
is m = 500 and C = 100, 000. We have similar observa-
tions as in simulations, although we consider heterogeneous
propagation delays here. When the number of jobs increases,
the amount of available resources a job can use decreases,
making the average makespan increases; when the budget
threshold increases, the ESP can rent more resources from
EIPs, decreasing the average makespan of all jobs.

C. Testbed-Based Evaluation

We implemented Hermes on eight Android phones (Hisili-
con Kirin 810 with 6GB bytes of memory) and two computers
(2.3 GHz Intel Core i5 with 8G bytes of memory). Three
phones were used as end users, one phone as the controller,
and the rest of them were considered as edge servers. Hermes
contained three main components, as shown in Fig. 8. The
connection manager allowed neighbor discovery, pairwise con-
nection, and data exchange. The task manager was responsible
for managing tasks states, running data analysis tasks, and
merging outputs/results. The planner communicated with other
Android phones for necessary information (e.g., available com-
putation resources) exchange. The controller was responsible

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 15,2020 at 02:17:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 7. Trace-driven results (the default setting is C = 100, 000 and m = 500).

Fig. 8. Testbed for Hermes on 8 phones and 2 PCs.

TABLE III

THE AVERAGE MAKESPAN OF THE SUBMITTED JOBS ON OUR TESTBED

for running the Hermes algorithm to split workloads of a job
among phones.

As we mentioned in Section III-A, there are many types of
divisible workloads such as pattern search, file compression,
joining operation in relational databases, graph coloring, and
genetic search. We evaluated Hermes using the Karger’s algo-
rithm for the min-cut problem as the divisible job. To guarantee
Karger’s algorithm returns the min-cut with high probability,
it is proved that Karger’s algorithm should be executed no less
than |V |(|V |−1)

2 times, where |V | is the number of vertices in
a graph. In our experiment, we randomly generated a graph
with |V | = 200, thus, Karger’s algorithm should be run at
least 9,900 times on the graph. We see represent the size of
the job as 9,900, and the minimal indivisible block is one run
of the Karger’s algorithm.

Table III shows the comparison results on our testbed
in terms of average makespan of the submitted jobs. The
results are averaged over 10 independent runs. Throughout the
experiments, we found that the gap between Hermes and OPT
was 21.82% at most, which is far better than our theoretical
bounds.

Fig. 9. The makespan-budget trade-off in Hermes.

Fig. 9 illustrates the makespan-budget relationship in Her-
mes. When an ESP increases its budget threshold, the total
makespan decreases; however, the returns are diminishing.
This trade-off can be used by an ESP to choose the right
balance between makespan and budget.

VI. CONCLUSION AND FUTURE WORK

In this paper, we study the problem of resource allo-
cation for edge service entities under a budget threshold,
identify its NP-completeness, and design an approximation
solution—Hermes—through two-step transformation and theo-
retical analysis. The evaluations results confirm our theoretical
findings and claims.

Hermes has several limitations, which are also the directions
of our future work. Firstly, Hermes assumes the wireless con-
nections between end users and edge servers are fixed, e.g., u2

connects with h1 and h2 at all times. In reality, the connection
between a user and an edge server may change over time, due
to the physical motion of the user. A simple way to adapt
to this changing situation is to re-run Hermes whenever a
connection disappears or a new connection emerges.

Secondly, we do not consider hierarchical edge servers in
this paper. With hierarchical edge servers, an edge server
can further delegate its workloads to upper-layer edge servers
(which are usually more powerful), while in our current
design, an edge server cannot delegate its workload to others.

Lastly, the optimization goal (i.e., minimizing the average
makespan of a set of jobs) may not represent the true need of
individual users. A user may be more interested in reducing
energy consumption of its mobile device. In the future, we may
need to support more metrics from the user perspective.

REFERENCES

[1] K. Ha, P. Pillai, W. Richter, Y. Abe, and M. Satyanarayanan, “Just-in-
time provisioning for cyber foraging,” in Proc. 11th Annu. Int. Conf.
Mobile Syst., Appl., Services, 2013, pp. 153–166.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 15,2020 at 02:17:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: PROVABLY EFFICIENT RESOURCE ALLOCATION FOR EDGE SERVICE ENTITIES USING HERMES 13

[2] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan,
“Towards wearable cognitive assistance,” in Proc. ACM MobiSys, 2014,
pp. 68–81.

[3] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proc. Mobidata, 2015, pp. 37–42.

[4] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for
mobile devices,” in Proc. 1st ACM Workshop Mobile Cloud Comput.
Services Social Netw. Beyond, 2010, pp. 6–11.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[6] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case
for VM-based cloudlets in mobile computing,” IEEE Pervas. Comput.,
vol. 8, no. 4, pp. 14–23, Oct. 2009.

[7] C. Wang, S. Zhang, H. Zhang, Z. Qian, and S. Lu, “Edge cloud
capacity allocation for low delay computing on mobile devices,” in Proc.
IEEE Int. Symp. Parallel Distrib. Process. with Appl. IEEE Int. Conf.
Ubiquitous Comput. Commun. (ISPA/IUCC), Dec. 2017, pp. 1–8.

[8] S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient dynamic
offloading and resource scheduling in mobile cloud computing,” in Proc.
35th Annu. IEEE Int. Conf. Comput. Commun., Apr. 2016, pp. 1–9.

[9] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation parti-
tioning for latency sensitive mobile cloud applications,” IEEE Trans.
Comput., vol. 64, no. 8, pp. 2253–2266, Aug. 2015.

[10] E. Cuervo et al., “MAUI: Making smartphones last longer with code
offload,” in Proc. 8th Int. Conf. Mobile Syst., Appl., Services, 2010,
pp. 49–62.

[11] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proc. ACM
EuroSys, 2011, pp. 301–314.

[12] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“COMET: Code offload by migrating execution transparently,” in Proc.
ODSI, 2012, pp. 93–106.

[13] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading,” in Proc. IEEE INFOCOM, Dec. 2012
pp. 945–953.

[14] S. Wang et al., “When edge meets learning: Adaptive control for
resource-constrained distributed machine learning,” in Proc. IEEE
INFOCOM, Jun. 2018, pp. 1–9.

[15] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in distributed
machine learning clusters,” in Proc. IEEE Conf. Comput. Commun.,
Apr. 2018, pp. 1–9.

[16] R. Yu, G. Xue, and X. Zhang, “Application provisioning in FOG
computing-enabled Internet-of-Things: A network perspective,” in Proc.
IEEE Conf. Comput. Commun., Apr. 2018, pp. 1–9.

[17] L. Wang, L. Jiao, T. He, J. Li, and M. Muhlhauser, “Service entity
placement for social virtual reality applications in edge computing,” in
Proc. IEEE Conf. Comput. Commun., Apr. 2018, pp. 1–9.

[18] Open Edge Computing. Accessed: Jul. 2018. [Online]. Available:
http://openedgecomputing.org/

[19] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient
resource allocation for mobile-edge computation offloading
(Extended Version),” 2016, arXiv:1605.08518. [Online]. Available:
http://arxiv.org/abs/1605.08518

[20] H. Tan, Z. Han, X.-Y. Li, and F. C. M. Lau, “Online job dispatching
and scheduling in edge-clouds,” in Proc. IEEE INFOCOM - IEEE Conf.
Comput. Commun., May 2017, pp. 1–9.

[21] S. Sundar and B. Liang, “Offloading dependent tasks with communi-
cation delay and deadline constraint,” in Proc. IEEE Conf. Comput.
Commun., Apr. 2018, pp. 1–9.

[22] N. Chen, S. Zhang, Z. Qian, J. Wu, and S. Lu, “When learning
joins edge: Real-time proportional computation offloading via deep
reinforcement learning,” in Proc. IEEE ICPADS, Aug. 2019, pp. 1–8.

[23] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing in
wireless metropolitan area networks,” in Proc. IEEE INFOCOM - 35th
Annu. IEEE Int. Conf. Comput. Commun., Apr. 2016, pp. 1–9.

[24] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in Proc. IEEE Conf.
Comput. Commun., Apr. 2018, pp. 1–9.

[25] L. Zhang and X. Tang, “Client assignment for improving interactiv-
ity in distributed interactive applications,” in Proc. IEEE INFOCOM,
Apr. 2011, pp. 3227–3235.

[26] Y. Liang, J. Ge, S. Zhang, J. Wu, Z. Tang, and B. Luo, “A utility-based
optimization framework for edge service entity caching,” IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 11, pp. 2384–2395, Nov. 2019.

[27] Y. Liang et al., “Interaction-oriented service entity placement in edge
computing,” IEEE Trans. Mobile Comput., early access, Nov. 8, 2019,
doi: 10.1109/TMC.2019.2952097.

[28] V. Vazirani, Approximation Algorithms. Berlin, Germany: Springer,
2004.

[29] Q. Liu, S. Huang, J. Opadere, and T. Han, “An edge network orchestrator
for mobile augmented reality,” in Proc. IEEE INFOCOM, May 2018,
pp. 1–9.

[30] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
delay-tolerance,” in Proc. NSDI, 2017, pp. 377–392.

[31] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: Scalable adaptation of video analytics,” in Proc. SIG-
COMM, 2018, pp. 1–14.

[32] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-based real-
time video analytics,” in Proc. IEEE INFOCOM, Aug. 2020, pp. 1–10.

[33] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets:
Bringing the cloud to the mobile user,” in Proc. 3rd ACM Workshop
Mobile Cloud Comput. Services, 2012, pp. 29–36.

[34] S. Zhang, J. Wu, and S. Lu, “Distributed workload dissemination for
makespan minimization in disruption tolerant networks,” IEEE Trans.
Mobile Comput., vol. 15, no. 7, pp. 1661–1673, Jul. 2016.

[35] Y. Li and W. Wang, “Can mobile cloudlets support mobile applications?”
in Proc. IEEE Conf. Comput. Commun., Apr. 2014, pp. 1060–1068.

[36] B. P. Rimal, D. Pham Van, and M. Maier, “Cloudlet enhanced fiber-
wireless access networks for mobile-edge computing,” IEEE Trans.
Wireless Commun., vol. 16, no. 6, pp. 3601–3618, Jun. 2017.

[37] V. Bharadwaj, D. Ghose, and T. G. Robertazzi, “Divisible load theory:
A new paradigm for load scheduling in distributed systems,” Cluster
Comput., vol. 6, no. 1, pp. 7–17, 2003.

[38] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance, “Cost-effective outbreak detection in networks,” in Proc.
13th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2007,
pp. 420–429.

[39] S. Fujishige, Submodular Functions and Optimization, vol. 58. Amster-
dam, The Netherlands: Elsevier, 2005.

[40] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis
of approximations for maximizing submodular set functions,” Math.
Program., vol. 14, no. 1, pp. 265–294, 1978.

[41] L. Li et al., “A simple yet effective balanced edge partition model for
parallel computing,” Proc. ACM Meas. Anal. Comput. Syst., vol. 1, no. 1,
pp. 1–21, Jun. 2017.

[42] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and com-
puting optimization in wireless powered mobile-edge computing sys-
tems,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1784–1797,
Mar. 2018.

[43] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in Proc. 35th Annu. IEEE Int. Conf. Comput.
Commun., Apr. 2016, pp. 1–9.

[44] D. Yang, X. Fang, and G. Xue, “ESPN: Efficient server placement in
probabilistic networks with budget constraint,” in Proc. IEEE INFO-
COM, Apr. 2011, pp. 1269–1277.

[45] T. Høiland-Jørgensen, B. Ahlgren, P. Hurtig, and A. Brunstrom, “Mea-
suring latency variation in the Internet,” in Proc. 12th Int. Conf. Emerg.
Netw. Exp. Technol., Dec. 2016, pp. 473–480.

Sheng Zhang (Member, IEEE) received the B.S. and
Ph.D. degrees from Nanjing University in 2008 and
2014, respectively. He is currently an Associate Pro-
fessor with the Department of Computer Science and
Technology, Nanjing University. He is also a mem-
ber of the State Key Laboratory for Novel Software
Technology. To date, he has published more than
70 articles, including those that appeared in TMC,
TON, TPDS, TC, MobiHoc, ICDCS, INFOCOM,
SECON, IWQoS, and ICPP. His research interests
include cloud computing and edge computing. He is

a Senior Member of the CCF. He received the Best Paper Runner-Up Award
from IEEE MASS 2012. He was a recipient of the 2015 ACM China Doctoral
Dissertation Nomination Award.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 15,2020 at 02:17:29 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TMC.2019.2952097

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

Yu Liang received the M.S. degree from Nanjing
University in 2011, where she is currently pursu-
ing the Ph.D. degree. She was a Senior Software
Engineer with the Trend Micro China Development
Center from 2011 to 2017. Her publications include
those that have appeared in TPDS, TMC, COMNET,
COMCOM, ICDCS, and Globecom. Her research
interests include resource allocation in cloud and
edge computing.

Jidong Ge (Member, IEEE) received the Ph.D.
degree in computer science from Nanjing University
in 2007. He is currently an Associate Professor
with the Software Institute, Nanjing University. His
current research interests include cloud computing,
distributed computing, workflow scheduling, work-
flow modeling, and process mining. His research
results have been published in more than 90 articles
in international journals and conference proceedings,
including the IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS (TPDS), the IEEE
TRANSACTIONS ON SERVICES COMPUTING (TSC), JPDC, COMNET, JASE,
JNCA, FGCS, JSS, Inf. Sci., ESA, ICSE, ASE, IWQoS, GlobeCom, APSEC,
ICSSP, HPCC, SEKE, and so on.

Mingjun Xiao (Member, IEEE) received the Ph.D.
degree from USTC in 2004. In 2012, he was a Visit-
ing Scholar with Temple University, under the super-
vision of Dr. J. Wu. He is currently an Associate
Professor with the School of Computer Science and
Technology, University of Science and Technology
of China (USTC). He is a TPC Member of many
conferences, including the IEEE INFOCOM 2018,
the IEEE ICDCS 2015, ACM Mobihoc 2014, and so
on, and has served as a reviewer for many journal
articles. He has published over 50 articles in refereed

journals and conferences, including TON, TMC, TPDS, TC, INFOCOM, and
so on. His main research interests include mobile crowdsensing, mobile social
networks, and vehicular ad hoc networks.

Jie Wu (Fellow, IEEE) is currently the Director
of the Center for Networked Computing and the
Laura H. Carnell Professor with Temple University.
He also serves as the Director of International
Affairs, College of Science and Technology. He has
served as the Chair of the Department of Com-
puter and Information Sciences from the summer
of 2009 to summer of 2016 and an Associate
Vice Provost for International Affairs from the fall
of 2015 to summer of 2017. Prior to joining Tem-
ple University, he was a Program Director at the

National Science Foundation and a Distinguished Professor at Florida Atlantic
University. His current research interests include mobile computing and
wireless networks, routing protocols, cloud and green computing, network
trust and security, and social network applications. He regularly publishes in
scholarly journals, conference proceedings, and books. He serves on several
editorial boards, including the IEEE TRANSACTIONS ON MOBILE COMPUT-
ING, the IEEE TRANSACTIONS ON SERVICE COMPUTING, the Journal of
Parallel and Distributed Computing, and the Journal of Computer Science and
Technology. Dr. Wu is a CCF Distinguished Speaker. He was a recipient of the
2011 China Computer Federation (CCF) Overseas Outstanding Achievement
Award. He was a General Co-Chair of the IEEE MASS 2006, the IEEE
IPDPS 2008, the IEEE ICDCS 2013, ACM MobiHoc 2014, ICPP 2016,
and IEEE CNS 2016, and a Program Co-Chair of the IEEE INFOCOM
2011 and CCF CNCC 2013. He was an IEEE Computer Society Distinguished
Visitor, an ACM Distinguished Speaker, and the Chair for the IEEE Technical
Committee on Distributed Processing (TCDP).

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 15,2020 at 02:17:29 UTC from IEEE Xplore. Restrictions apply.

